Biosom: gene synonym analysis by self-organizing map.
نویسندگان
چکیده
There are several guidelines for gene nomenclature, but they are not always applied to the names of newly identified genes. The lack of standardization in naming genes generates inconsistent databases with errors such as genes with the same function and different names, genes with different functions and the same name, and use of an abbreviated name. This paper presents a methodology for predicting synonyms in a given gene nomenclature, thereby detecting and minimizing naming redundancy and inconsistency and facilitating the annotation of new genes and data mining in public databases. To identify gene synonyms, i.e., gene ambiguity, the methodology proposed begins by grouping genes according to their names using a Kohonen self-organizing map artificial neural network. Afterwards, it identifies the groups generated employing the Matrix-U technique. The employment of such techniques allows one to infer the synonyms of genes, to predict probable hypothetical gene names and to point out possible errors in a database record. Many mistakes related to gene nomenclature were detected in this research, demonstrating the importance of predicting synonyms. The methodology developed is applicable for describing hypothetical, putative and other types of genes without a known function. Moreover, it can also indicate a possible function for genes after grouping them.
منابع مشابه
Classification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2015